
Learning Compositional Behaviors from
Demonstration and Language

Weiyu Liu1*, Neil Nie1*, Ruohan Zhang1, Jiayuan Mao2†, Jiajun Wu1†

1Stanford University 2MIT

Abstract: We introduce Behavior from Language and Demonstration (BLADE), a
framework for long-horizon robotic manipulation by integrating imitation learning
and model-based planning. BLADE leverages language-annotated demonstrations,
extracts abstract action knowledge from large language models (LLMs), and con-
structs a library of structured, high-level action representations. These represen-
tations include preconditions and effects grounded in visual perception for each
high-level action, along with corresponding controllers implemented as neural
network-based policies. BLADE can recover such structured representations auto-
matically, without manually labeled states or symbolic definitions. BLADE shows
significant capabilities in generalizing to novel situations, including novel initial
states, external state perturbations, and novel goals. We validate the effectiveness
of our approach both in simulation and on a real robot with a diverse set of objects
with articulated parts, partial observability, and geometric constraints.

Keywords: Manipulation, Planning Abstractions, Learning from Language

1 Introduction
Developing autonomous robots capable of completing long-horizon manipulation tasks is a significant
milestone. We want to build robots that can directly perceive the world, operate over extended periods,
generalize to various states and goals, and are robust to perturbations. A promising direction is to
combine learned policies with model-based planners, allowing them to operate on different time
scales. In particular, imitation learning-based methods have proven highly successful in learning
policies for various “behaviors,” which usually operate over a short time span [e.g., 1]. To solve more
complex and longer-horizon tasks, we can compose these behaviors by planning in abstract action
spaces [2–4], in latent spaces [5], or via large pre-trained models such as large language models [6].

However, one of the key challenges of all high-level planning approaches is the automatic acquisition
of an abstraction for the learned “behaviors” to support long-horizon planning. The goal of this
behavior abstraction learning is to build representations that describe the preconditions and effects of
behaviors, to enable chaining and search. These representations should depend on the environment, the
set of possible goals, and the specifications of individual behaviors. Furthermore, these representations
should be grounded on high-dimensional perception inputs and low-level robot control commands.

Our insight into tackling this challenge is to leverage knowledge from two sources: the low-level,
mechanical understanding of robot-object contact, and the high-level, abstract understanding of
object-object interactions described in language that can be extracted from language models as the
knowledge source. Our framework, behavior from language and demonstration (BLADE), takes as
input a small number of language-annotated demonstrations (Fig. 1a). It segments each trajectory
based on which object is in contact with the robot. Then, it uses a large language model (LLM),
conditioned on the contact sequences and the language annotations, to propose abstract behavior
descriptions with preconditions and effects that best explain the demonstration trajectories. During
training, we extract the state abstraction terms from the preconditions and effects (e.g., turned-on,

→ denotes equal contribution. † denotes equal advising. Project page and videos: https://blade-bot.github.io/.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://blade-bot.github.io/

(b) Generalizations
(c) Examples: Robust to Perturbations and Geometry Constraints

Recovery: move faucet head ခ place in sinkPerturbation: kettle moved

Kettle Filled & On Stove

…

Geometric constraint: stove blocked Recovery: move pot to table

…
Stove is not blocked

Kettle In Sink
Unseen Initial

Condition
State

Perturbation

Partial
Observability

Geometric
Constraints

❌

Kettle Filled & On Stove

Place In Sink Move Faucet Head Turn On Faucet Turn Off Faucet Move Faucet Away Place Pot on Table Move Kettle to Stove

(a) Annotated Human Demonstrations | Task: Boil Water On Stove

Figure 1: BLADE, a robot manipulation framework combining imitation learning and model-based planning. (a)
BLADE takes language-annotated demonstrations as training data. (b) It generalizes to unseen initial conditions,
state perturbations, and geometric constraints. (c) In the depicted scenarios, BLADE recovers from perturbations
such as moving the kettle out of the sink, and resolves geometric constraints including a blocked stove.

aligned-with), and learn their groundings on perception inputs. We also learn the control policies
associated with each behavior (e.g., turn on the faucet).

Our model offers several advantages. First, unlike prior work that relies on manually defined state
abstractions or additional state labels, our method automatically generates state abstraction labels
based on the language-annotated demonstrations and LLM-proposed behavior descriptions. BLADE
recovers the visual grounding of these abstractions without any additional label. Second, BLADE
generalizes to novel states and goals by composing learned behaviors using a planner. Shown in
Fig. 1b, it can handle various novel initial conditions and external perturbations that lead to unseen
states. Third, our method can handle novel geometric constraints (Fig. 1c) and partial observability
from articulated bodies like drawers.

2 Related Work
Composing skills for long-horizon manipulation. A large body of model-based planning methods
use manually-defined transition models [2, 7–12] or models learned from data [13–18] to generate
long-horizon plans. However, learning dynamics models with accurate long-term predictions and
strong generalization remains challenging. A related direction is to introduce hierarchical structures
into the policy models [19–25], where different methods can segment continuous demonstrations
into short-horizon skills [23, 26, 27]. Facing the challenges in modeling action dependencies, these
methods are limited to following sequentially specified subgoals. Some work addresses this issue
by learning the dependencies between actions from data, but they require large-scale supervised
datasets [28–31]. Our approach is related to methods that learn symbolic action representations [32–
36]; the difference is that BLADE uses a LLM to generates causal models of the environment and
learns their groundings on sensory inputs.

Using LLMs for planning. Many researchers have explored using LLMs for planning. Methods
for direct generation of action sequences [37, 38] can struggle to produce accurate plans [39, 40].
Researchers have also leveraged LLMs as translators from natural language instructions to symbolic
goals [41–44], as generalized solvers [45], as memory modules [46], and as world models [47, 48]. To
improve the planning accuracy, prior work has explored techniques including using programs [49, 50],
learning affordance functions [6, 51], replanning [52], finetuning [53–55], embedding reasoning in
a behavior tree [56], and VLM-based decision-making [57, 58]. BLADE shares a similar spirit as
methods using LLMs to generate planning-compatible action representations [59–61]. However, they
make assumptions on the availability of state abstractions, while BLADE grounds LLM-generated
action definitions without additional labels. Also complementary to methods that leverage these
representations for skill learning [62, 63], our approach uses them for composing skills in novel ways.

2

(:action open-cabinet-door
 :precondition (not (is-door-open ?door))
 :effect (is-door-open ?door)
 :body (then
 (close-gripper)
 (push ?door)
 (open-gripper)))

(a) Annotated Human Demonstrations

“Open Cabinet Door”
“Grab Kettle”

(b) Structured Behavior Representations

Open Cabinet Door

...

...

Bi-Level Planning & Execution

Novel Goal States: in(teabag, kettle)
closed(cabinet-door), closed(drawer)

Novel Initial Condition

Contact Segmentation
+ LLM Proposal

Learning Algorithms

...

Place Cut On Stove

Robot Actions
Diffusion

Policy
“Open Drawer”

“is-open(drawer)”
“is-filled(cup)”

...

...

“is-blocked(door)” Classifier
Model False

True

...

...

False

Skill Library Classifier Library

(c) Generalization

Figure 2: Overview of BLADE. (a) BLADE receives language-annotated human demonstrations, (b) segments
demonstrations into contact primitives, and learns a structured behavior representation. (c) It generalizes to
novel conditions by leveraging bi-level planning and execution to achieve goal states.

3 Problem Formulation
We consider the problem of learning a language-conditioned goal-reaching manipulation policy.
Formally, the environment is modeled as a tuple →X ,U , T ↑ where X is the raw state space, U is the
low-level action space, and T : X ↓ U ↔ X is the transition function (which may be stochastic and
unknown). Furthermore, the robot will receive observations o ↗ O that may be partially observable
views of the states. At test time, the robot also receives a natural language instruction ωt, which
corresponds to a set of goal states. An oracle goal satisfaction function defines whether the language
goal is reached, i.e., gωt : X ↔ {T, F}. Given an initial state x0 ↗ X and the instruction ωt, the
robot should generate a sequence of low-level actions {u1, u2, ..., uH} ↗ U

H .

In the language-annotated learning setting, the robot has a dataset of language-annotated demonstra-
tions D. Each demonstration is a sequence of robot actions {u1, ..., uH} paired with observations
{o0, ..., oH}. Each trajectory is segmented into M sub-trajectories, and natural language descriptions
{ω1, ..., ωM} are associated with the segments (e.g., “place the kettle on the stove”). In this paper, we
assume that there is a finite number of possible ω’s—each corresponding to a skill to learn.

Directly learning a single goal-conditioned policy that can generalize to novel states and goals is
challenging. Therefore, we recover an abstract state and action representation of the environment and
combine online planning in abstract states and offline policy learning for low-level control to solve
the task. In BLADE, behaviors are represented as temporally extended actions with preconditions and
effects characterized by state predicates. Formally, we want to recover a set of predicates P that define
an abstract state space S . We focus on a scenario where all predicates are binary. However, they are
grounded on high-dimensional sensory inputs. Using P , a state can be described as a set of grounded
atoms such as {kettle(A), stove(B), filled(A), on(A,B)} for a two-object scene. BLADE will learn a
function ! : O ↔ S that maps observations to abstract states. In its current implementation, BLADE
requires humans to additionally provide a list of predicate names in natural language, which we
have found to be helpful for LLMs to generate action definitions. We provide additional ablations
in the Appendix A.2. Based on S, we learn a library of behaviors (a.k.a., abstract actions). Each
behavior a ↗ A is a tuple of →name, args, pre, eff,ε↑. name is the name of the action. args is a list of
variables related to the action, often denoted by ?x, ?y. pre and eff are the precondition and effect
formula defined in terms of the variables args and the predicates P . A low-level policy ε : O ↔ U is
also associated with a. The semantics of the preconditions and effects is: for any state x such that
pre(!(x)) is satisfied, executing ε at x will lead to a state x→ such that eff(!(x→)) [64].

4 Behavior from Language and Demonstration
BLADE is a method for learning abstract state and action representations from language-annotated
demonstrations. It works in three steps, as illustrated in Fig. 2. First, we generate a symbolic behavior
definition conditioned on the language annotations and contact sequences in the demonstration using
a large language model (LLM). Next, we learn the classifiers associated with all state predicates and
the control policies, all from the demonstration without additional annotations. At test time, we use a
bi-level planning and execution strategy to generate robot actions.

3

(:action turn_on_faucet
 :precondition (and (is-turned-off ?faucet-knob)
 (is-aligned ?kettle ?faucet-head)
 (is-placed-in ?kettle ?sink))
 :effect (and (is-turned-on ?faucet-knob)
 (not (is-turned-off ?faucet-knob)))
 :body (then (close-gripper) (push ?faucet-knob) (open-gripper)))

(:action move_faucet_head_over_sink
 :precondition (and (is-placed-in ?kettle ?sink)
 (is-turned-away ?faucet-head) ...)
 :effect (and (is-aligned ?kettle ?faucet-head)
 (not (is-turned-away ?faucet-head)))
 :body (then (close-gripper) (push ?faucet-head) (open-gripper)))

Move Faucet Head Turn On Faucet

…
Place In Sink Wait to be Filled

push open-gripperclose-gripper

(a) Demonstrations

(b) Temporal Segmentation with Contact Primitives

push open-gripperclose-gripper

… …

…

transit

…
transit

(b) Temporal Segmentation with Contact Primitives

(c) Automatic Predicate Annotation

(d) Behavior Description Generation with LLMs

…

Figure 3: Behavior Descriptions Learning. (a) A demonstration is provided along with corresponding language
annotations. (b) The demonstration is segmented into a sequence of contact primitives. (c) A large language
model interprets the annotation and contact sequence, generating a symbolic behavior definition. (d) The system
automatically generates data to learn classifiers for state predicates.

4.1 Behavior Description Learning
Given a finite set of behaviors with language descriptions {ω} and corresponding demonstration
segments, we generate an abstract description for each ω by querying large language models. To
facilitate LLM generation, we provide additional information on the list of objects with which the
robot has contact. The generated operators are further refined with abstract verification.

Temporal segmentation. We first segment each demonstration (Fig. 3a) into a sequence of contact-

based primitives (Fig. 3b). In this paper we consider seven primitives describing the interactions
between the robot and other objects: open/close grippers without holding objects, move-to(x) which
moves the gripper to an object, grasp(x, y) and place(x, y) which grasp and place object x from/onto
another object y, move(x) which moves the currently holding object x and push(x). We leverage
proprioception, i.e., gripper open state, and object segmentation to automatically segment the con-
tinuous trajectories into these basis segments. For example, pushing the faucet head away involves
the sequence of {close-gripper, push, open-gripper}. This segmentation will be used for LLMs to
generate operator definitions and for constructing training data for control policies.

Behavior description generation with LLMs. Our behavior description language is based on
PDDL [65]. We extend the PDDL definition to include a body section which is a sequence of contact
primitives. It will be generated by the LLM based on the demonstration data.

Our input to the LLM mainly contains: 1) a general description of the environment, 2) the natural
language descriptions ω associated with the behavior itself and other behaviors that have appeared
preceding or following ω in the dataset, 3) all possible sequence of contact primitive sequences
associated with ω across the dataset, and 4) additional instructions on the PDDL syntax, including
a single PDDL definition example. We find the additional context useful. As shown in Fig. 3d, in
addition to preconditions and effects of the operators, we also ask LLMs to predict a body of contact
primitive sequence associated with the behavior, which we call body. We assume that each behavior
has a single corresponding contact primitive sequence, and use this step to account for noises in the
segmentation annotations. After LLM predicts the definition for all behavior, we will re-segment the
demonstrations associated with each behavior based on the LLM-predicted body section.

Behavior description refinement with abstract verification. In addition to checking for syntax
errors, we also verify the generated behavior descriptions with abstract verification on the demon-
stration trajectories. Given a segmented sequence of the trajectory where each segment is associated
with a behavior, we verify whether the preconditions of each behavior can be satisfied by the accumu-
lated effects of the previous segments. This verification does not require learning the grounding of

4

predicates and can be done at the behavior level for incorrect preconditions and effects, and at the
contact primitive level for missing or incorrect contact primitives (e.g., grasp cannot be immediately
followed by other grasp). We resample behavior definitions that do not pass the verification.

4.2 Classifier and Policy Learning
Given the dataset of state-action segments associated with each behavior, we train the classifiers for
different state predicates and the low-level controller for each behavior.

Automatic predicate annotation. We leverage all behavior descriptions to automatically label an
observation sequence {o1, ..., oH} based on its associated segmentation. In particular, at o0, we
label all state predicates as “unknown.” Next, we unroll the sequence of behavior executed in ō. As
illustrated in Fig. 3c, before applying a behavior a at step ot, we label all predicates in pre

a
true and

predicates in eff
a

false. When a finishes at step ot→ , we label all predicates in eff
a
. In addition, we will

propagate the labels for state predicates to later time steps until they are explicitly altered by another
behavior a. In contrast to earlier methods, such as Migimatsu and Bohg [66] and Mao et al. [67],
which directly use the first and last state of state-action segments to train predicate classifiers, our
method greatly increases the diversity of training data. After this step, for each predicate p ↗ P , we
obtain a dataset of paired observations o and the predicate value of p at the corresponding time step.

Classifier learning. Based on the state predicate dataset generated from behavior definitions, we train
a set of state classifiers fε(p) : O ↔ {T, F}, which are implemented as standard neural networks for
classification. We include implementation details in Appendix A.6. In real-world environments with
strong data-efficiency requirements, we additionally use an open vocabulary object detector [68] to
detect relevant objects for the state predicate and crop the observation images. For example, only
pixels associated with the object faucet will be the input to the turned-on(faucet) classifier.

Policy learning. For each behavior, we also train control policies εε(a) : O ↔ U , implemented as
a diffusion policy [1]. In simulation, we use a combination of frame-mounted and wrist-mounted
RGB-D cameras as the inputs to the diffusion policy, while in the real world, the policy takes raw
camera images as input. The high-level planner orchestrates which of these low-level policies to
deploy based on the scene and states. Once trained on these diverse demonstrations of different skills,
the resulting low-level policies can adapt to local changes, such as variations in object poses.

4.3 Bi-Level Planning and Execution
At test time, given a novel state and a novel goal, BLADE first uses LLMs to translate the goal into a
first-order logic formula based on the state predicates. Next, it leverages the learned state abstractions
to perform planning in a symbolic space to produce a sequence of behaviors. Then, we execute
the low-level policy associated with the first behavior, and we re-run the planner after the low-level
policy finishes—this enables us to handle various types of uncertainties and perturbations, including
execution failure, partial observability, and human perturbation. In implementation, we use the
fast-forward heuristic to generate plans [69]; however, our method is planner-agnostic, and other
symbolic planners (e.g., Fast-Downward [70]) are compatible.

Visibility and geometric constraints are also modeled as preconditions, in addition to other object-
state and relational conditions. For example, the behavior “opening the cabinet door” will have
preconditions on the initial state of the door, a visibility constraint that the door is visible, and a
geometric constraint that nothing is blocking the door. When those preconditions are not satisfied,
the planner will automatically generate plans, such as actions that move obstacles away, to achieve
them. Partial observability was handled by using the most-likely state assumption during planning
and performing replanning. We include details in Appendix A.8.

5 Experiments
5.1 Simulation Experimental Setup
We use the CALVIN benchmark [71] for simulation-based evaluations, which include teleoperated
human-play data. We use the split D of the dataset, which consists of approximately 6 hours of
interactions. Annotations of the play data are generated by a script that detects goal conditions

5

Goal State
Abstract Goals

Initial Condition

Initial Condition Goal State

Language Goal: “Place All Blocks Inside Drawer”
 ∀x . is-block(x) ⇒ in(x, drawer)

Language Goal: “Find Block In Slider”
 is-block(x), is-blue(x), is-table(y), on(x, y)

Partial Observability

Language Goal: “Move Sliding Door Left”
 is-sliding-door(x), left(x)

Geometric Constraints
Goal StateInitial Condition Goal StateInitial Condition

Blue block not visible Blue block on table Purple cube
blocking slider Slider on the leftDrawer closed

blocks outside drawer
Drawer open

blocks inside drawer

Figure 4: Generalization Tasks in CALVIN. Examples from the three generalization tasks in the CALVIN
simulation environment. Successfully completing these tasks require planning for and executing 3-7 actions.
Table 1: Generalization results in CALVIN. Mean success rates with STD from three seeds are reported.
BLADE outperforms latent planning, LLM, and VLM baselines in completing novel long-horizon tasks.

Method State
Classifier

Latent
Feasibility

Generalization Task

Abstract Goal Geometric Constraint Partial Observability

HULC [72] N/A N/A 2.78± 3.47 11.67± 11.55 0.00± 0.00
SayCan [6] N/A Short 23.89± 1.92 1.67± 2.89 1.67± 2.89
VILA [57] N/A N/A 18.38± 2.48 0.00± 0.00 4.17± 5.20
T2M-Shooting [51] Learned Long 57.78± 12.29 0.00± 0.00 13.33± 1.44
Ours Learned N/A 68.33± 10.14 26.67± 7.64 75.83± 3.82

T2M-Shooting [51] GT Long 61.67± 5.00 0.00± 0.00 0.83± 1.44
Ours GT N/A 76.11± 6.74 56.67± 16.07 70.00± 5.00

on simulator states, and there are in total 34 types of behaviors. We use RGB-D images from the
mounted camera for classifier learning and partial 3D point clouds recovered from the images for
policy learning. The original benchmark focuses only on evaluating individual skills and instruction
following. To evaluate the ability to compositionally combine previously learned policies to solve
novel tasks, we design six new generalization tasks, with examples shown in Fig. 4. Each task has a
language instruction, a sampler that generates random initial states, and a goal satisfaction function
for evaluation. For each task, we sample 20 initial states and evaluate all methods with three different
random seeds. See Appendix B.1 for more details on the benchmark setup.

Baselines. We compare BLADE with two groups of baselines: hierarchical policies with planning in
latent spaces and LLM/VLM-based methods for robotic planning. For the former, we use HULC [72],
a representative method in CALVIN, which learns a hierarchical policy from language-annotated
play data using hindsight labeling. For the latter, we use SayCan [6], Robot-VILA [57], and
Text2Motion [51]. Note that Text2Motion assumes access to ground-truth symbolic states. Hence we
compare Text2Motion with BLADE in two settings: one with the ground-truth states and the other
with the state classifiers learned by BLADE. See Appendix B.2 for more details on these methods.

5.2 Results in Simulation
Table 1 presents the performance of different models in all three types of generalization tasks.

Structured behavior representations improve long-horizon planning. We first compare to the
hierarchical policy HULC in Table. 1. BLADE with learned classifiers achieves a more than 65%
improvement in the success rate for reaching abstract goals while using the same language-annotated
play data. We attribute this to the particular implementation of hindsight labeling in HULC being not
sufficient to generate plans that chain multiple high-level actions: for example, the task of placing all
blocks in the closed drawer requires chaining together a minimum of 7 behaviors.

Structured transition models learned by BLADE facilitate long-horizon planning. Both SayCan
and T2M-Shooting uses learned action feasibility models for planning. Shown in Table. 1, learning
accurate feasibility models directly from raw demonstration data remains a significant challenge.
In our experiment, we find that first, when the LLM does not take into account state information
(SayCan), using the short-horizon feasibility model is not sufficient to produce sound plans. Second,
since our model learns a structured transition model, factorized into different state predicates, BLADE

6

is capable of producing more accurate longer-horizon plans than T2M-Shooting which learns long-
horizon feasibility from data.

Structured scene representations facilitate making feasible plans. Compared to the Robot-VILA
method, which directly predicts action sequences based on the image state, BLADE first uses learned
state classifiers to construct an abstract state representation. This contributes to a 49% improvement
on the Abstract Goal tasks in Table 1. We observe that the pre-trained VLM used in Robot-VILA
often predicts actions that are not feasible in the current state. For example, Robot-VILA consistently
performs better in completing “placing all blocks in a closed drawer” than “placing all blocks in an
open drawer” since it always predicts opening the drawer as the first step.

Explicit modeling of geometric constraints and object visibility improves performance in these
scenarios. BLADE can reason about these challenging situations without explicitly being trained
in those settings. Table. 1 shows that our approach consistently outperforms baselines in these two
settings. These generalization capabilities are built on the explicit modeling of geometric constraints
and object visibility in behavior preconditions.

BLADE can automatically propose operators for the specific environment given demonstrations.
Our experiment shows that the LLM can automatically propose high-quality behavior descriptions
that resemble the dependency structures among operators. For example, the LLM discovers from
the given contact primitive sequences and language-paired demonstration that blocks can only be
placed after the block is lifted and that a drawer needs to be opened before placing objects inside, etc.
Some of these dependencies are unique to the CALVIN environment, therefore requiring the LLM to
generate specifically for this domain. We provide more visualizations in the Appendix A.1.

Table 2: Ablation on state classifier learning in CALVIN.

Method Abstract Geometric Partial Obs.

[66] 33.89± 5.85 9.17± 5.20 3.33± 2.89
BLADE 68.33± 10.14 26.67± 7.64 75.83± 3.82

BLADE’s automatic predicate annotation
enables better classifier learning. From
Table 1, we observe that having accurate
state classifier models is critical for algo-
rithms’ performance (GT vs. Learned).
Hence, we perform additional ablation stud-
ies on classifier learning. Prior work such
as Migimatsu and Bohg [66] also presented a method for learning the preconditions and effects of
actions from segmented trajectories and symbolic action descriptions. The key difference between
BLADE and theirs is that they only use the first and last frame of each segment to supervise the
learning of state classifiers. We compare the two classifier learning algorithms, given the same
LLM-generated behavior definitions, by evaluating the classifier accuracy on held-out states. BLADE
shows a 20.7% improvement in F1 (16.3% improvement for classifying object states and 38.6%
improvement for classifying spatial relations) compared to the baseline model. This also translates
into significant improvements in the planning success rate, as shown in Table 2.

5.3 Real World Experiments
Environments. We use a Franka Emika robot arm with a parallel jaw gripper. The setup includes
five RealSense RGB-D cameras, with one being wrist-mounted on the robot and the remaining
positioned around the workspace. Fig. 5 shows the two domains: Make Tea and Boil Water. For
each domain, we collect 85 language-annotated demonstrations using teleoperation with a 3D mouse.
After segmenting the demonstrations using proprioception sensor data, an LLM is used to generate
behavior descriptions. These descriptions are subsequently used for policy and classifier learning.

Setup. We compare BLADE against the VLM-based baseline Robot-VILA. We omit SayCan and
T2M-Shooting since they require additional training data. We first test the original action sequences
seen in the demonstrations for each domain. We then test on tasks that require novel compositions of
behaviors for four types of generalizations, i.e., unseen initial condition, state perturbation, geometric
constraints, and partial observability. For each generalization type, we run six experiments and report
the number of experiments that have been successfully completed. See Appendix D for details.

Results. In Fig. 5, we show that our model is able to successfully complete at least 4/6 tasks for all
generalization types in the two different domains. In comparison, Robot-VILA struggles to generate

7

Open/Close
Cabinet DoorPlace Kettle

On Stove

Open Drawer
Place Teabag In Kettle

Place Kettle In Sink

Turn On/Off Faucet

Move Faucet Head
Towards/Away From Sink

Place Kettle On Stove

Place Pot
On Table

Make Tea DomainBoil Water Domain

0

1

2

3

4

5

6

Orig. Seq Unseen Init Perturb. Geo. Constr.Partial Obs.

1/6
0/6

1/61/6
0/6

4/64/64/64/6
5/6 BLADE Robot-VILA

Co
un

t (o
ut

of
6)

0
1
2
3
4
5
6

Orig. Seq Unseen Init Perturb. Geo. Constr.
0/60/60/60/6

6/66/66/6
5/6

Generalization Tasks

Boil Water Results Make Tea Results

Figure 5: Domains and Results in Real World. Make Tea features a toy kitchen designed to simulate boiling
water on a stove. The robot must assess the available space on the stove for the kettle. It also needs to manage
the dependencies between actions, such as the faucet must be turned away before the kettle can be placed into
the sink to avoid collisions. Boil Water involves a tabletop task aimed at preparing tea, incorporating a cabinet,
a drawer, and a stove. The robot must locate the kettle, potentially hidden within the cabinet, and a teabag in the
drawer. Additionally, it must consider geometric constraints by removing obstacles that block the cabinet doors.
In both environments, our model significantly outperforms the VLM-based planner Robot-VILA.

Open Left Door Place On Stove Open Drawer

BL
AD

E
Ro

bo
t-V

ila Plan: “open-drawer”, “place-teabag” …
(Policy cannot achieve the goal, teabag is on the stove)

Open Right DoorInitial Condition Place Teabag

Grab TeabagOpen Drawer

Plan: “grab-kettle”, “grab-kettle”, “grab-kettle” …
(Policy unable to achieve the goal, resulting in a loop)

Grab Kettle

BL
AD

E
Ro

bo
t-V

ila

Goal Achieved

Goal Achieved

Open Left DoorUnblock Doors Place On Stove Place Teabag

Cup Not Visible Cup Not Visible Cup is Visible

(b)

Left & Right
Doors Blocked

Drawer Open

Geometric Constraint:
Kettle blocking the doors

Cup Not Visible
Initial Condition

Initial Condition

(a)

Figure 6: Real World Planning and Execution. We show the execution traces from BLADE and Robot-VILA
for two generalization tasks: (a) partial observability and (b) geometric constraints.

correct plans to complete the tasks. In Fig. 6, we visualize the generated plans and execution traces
of both models. In example (a), we show that BLADE can find the kettle initially hidden in the cabinet
and then complete the rest of the task. In comparison, Robot-VILA directly predicts placing the
teabag in the kettle when the kettle is not visible, resulting in a failure.

6 Conclusion and Discussion
BLADE is a novel framework for long-horizon manipulation by integrating model-based planning and
imitation learning. BLADE uses an LLM to generate behavior descriptions with preconditions and
effects from language-annotated demonstrations and automatically generates state abstraction labels
based on behavior descriptions for learning state classifiers. At performance time, BLADE generalizes
to novel states and goals by composing learned behaviors with a planner. Compared to latent-space
and LLM/VLM-based planners, BLADE successfully completes significantly more long-horizon tasks
with various types of generalizations.

Limitations. One limitation of BLADE is that the automatic segmentation of demonstrations is based
on gripper states; more advanced contact detection techniques might be required for certain tasks such
as caging grasps. We also assume the knowledge of a given set of predicate names in natural language
and focus on learning dependencies between actions using the given predicates. Automatically
inventing task-specific predicates from demonstrations and language annotations, possibly with the
integration of vision-language models (VLMs) is an important future direction. In our experiments,
we also found that noisy state classification led to some planning failures. Therefore, developing
planners that are more robust to noises in state estimation is necessary. Finally, achieving novel
compositions of behaviors also requires policies with strong generalization to novel environmental
states, which remain a challenge for skills learned from a limited amount of demonstration data.

8

Acknowledgments

This work is in part supported by Analog Devices, MIT Quest for Intelligence, MIT-IBM Watson AI
Lab, ONR Science of AI, NSF grant 2214177, ONR N00014-23-1-2355, AFOSR YIP FA9550-23-
1-0127, AFOSR grant FA9550-22-1-0249, ONR MURI N00014-22-1-2740, ARO grant W911NF-
23-1-0034. We extend our gratitude to Jonathan Yedidia, Nicholas Moran, Zhutian Yang, Manling
Li, Joy Hsu, Stephen Tian, Chen Wang, Wenlong Wang, Yunfan Jiang, Chengshu Li, Josiah Wong,
Mengdi Xu, Sanjana Srivastava, Yunong Liu, Tianyuan Dai, Wensi Ai, Yihe Tang, the members of
the Stanford Vision and Learning Lab, and the anonymous reviewers for insightful discussions.

References

[1] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In RSS, 2023. 1, 5, 18, 19

[2] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. PDDLStream: Integrating Symbolic
Planners and Blackbox Samplers via Optimistic Adaptive Planning. In ICAPS, 2020. 1, 2

[3] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and L. Fei-Fei. Deep affordance
foresight: Planning through what can be done in the future. In ICRA, 2021.

[4] H. Shi, H. Xu, Z. Huang, Y. Li, and J. Wu. RoboCraft: Learning to see, simulate, and shape
elasto-plastic objects in 3d with graph networks. IJRR, 43(4):533–549, 2024. 1

[5] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In CoRL, 2020. 1

[6] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, et al. Do as I can, not as I say: Grounding language in robotic affordances. In CoRL,
2023. 1, 2, 6

[7] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined Task and
Motion Planning through an Extensible Planner-Independent Interface Layer. In ICRA, 2014. 2

[8] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. Incremental task and motion
planning: A constraint-based approach. In RSS, 2016.

[9] M. Toussaint. Logic-Geometric Programming: An optimization-based approach to combined
task and motion planning. In IJCAI, 2015.

[10] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon manipu-
lation of unknown objects via task and motion planning with estimated affordances. In ICRA,
2022.

[11] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint. Deep visual heuristics: Learning feasibility of
mixed-integer programs for manipulation planning. In ICRA, 2020.

[12] Z. Yang, C. R. Garrett, T. Lozano-Pérez, L. Kaelbling, and D. Fox. Sequence-based plan
feasibility prediction for efficient task and motion planning. In RSS, 2023. 2

[13] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In ICRA, 2017. 2

[14] S. Nair and C. Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks via
visual subgoal generation. In ICLR, 2020.

[15] H. Shi, H. Xu, S. Clarke, Y. Li, and J. Wu. Robocook: Long-horizon elasto-plastic object
manipulation with diverse tools. In CoRL, 2023.

[16] A. Simeonov, Y. Du, B. Kim, F. Hogan, J. Tenenbaum, P. Agrawal, and A. Rodriguez. A long
horizon planning framework for manipulating rigid pointcloud objects. In CoRL, 2021.

9

[17] X. Lin, C. Qi, Y. Zhang, Z. Huang, K. Fragkiadaki, Y. Li, C. Gan, and D. Held. Planning
with spatial and temporal abstraction from point clouds for deformable object manipulation. In
CoRL, 2022.

[18] Y. Du, M. Yang, P. Florence, F. Xia, A. Wahid, B. Ichter, P. Sermanet, T. Yu, P. Abbeel, J. B.
Tenenbaum, et al. Video language planning. arXiv:2310.10625, 2023. 2

[19] J. Luo, C. Xu, X. Geng, G. Feng, K. Fang, L. Tan, S. Schaal, and S. Levine. Multi-stage cable
routing through hierarchical imitation learning. IEEE Transactions on Robotics, 2024. 2

[20] L. X. Shi, Z. Hu, T. Z. Zhao, A. Sharma, K. Pertsch, J. Luo, S. Levine, and C. Finn. Yell at your
robot: Improving on-the-fly from language corrections. arXiv:2403.12910, 2024.

[21] S. Pirk, K. Hausman, A. Toshev, and M. Khansari. Modeling long-horizon tasks as sequential
interaction landscapes. In CoRL, 2020.

[22] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play. In CoRL, 2023.

[23] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data. In
RSS, 2021. 2

[24] O. Mees, J. Borja-Diaz, and W. Burgard. Grounding language with visual affordances over
unstructured data. In ICRA, 2023. 21

[25] A. Mandlekar, C. Garrett, D. Xu, and D. Fox. Human-in-the-loop task and motion planning for
imitation learning. In CoRL, 2023. 2

[26] Z. Zhang, Y. Li, O. Bastani, A. Gupta, D. Jayaraman, Y. J. Ma, and L. Weihs. Universal Visual
Decomposer: Long-horizon manipulation made easy. In ICRA, 2024. 2

[27] Y. Zhu, P. Stone, and Y. Zhu. Bottom-up skill discovery from unsegmented demonstrations
for long-horizon robot manipulation. IEEE Robotics and Automation Letters, 7(2):4126–4133,
2022. 2

[28] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu. Hierarchical planning for long-horizon manipu-
lation with geometric and symbolic scene graphs. In ICRA, 2020. 2

[29] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles. Neural
task graphs: Generalizing to unseen tasks from a single video demonstration. In CVPR, 2019.

[30] D.-A. Huang, D. Xu, Y. Zhu, A. Garg, S. Savarese, F.-F. Li, and J. C. Niebles. Continuous
relaxation of symbolic planner for one-shot imitation learning. In IROS, 2019.

[31] Y. Huang, N. C. Taylor, A. Conkey, W. Liu, and T. Hermans. Latent space planning for
multi-object manipulation with environment-aware relational classifiers. IEEE Transactions on

Robotics, 2024. 2

[32] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols: Learning symbolic
representations for abstract high-level planning. Journal of Artificial Intelligence Research, 61:
215–289, 2018. 2

[33] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez, L. Kaelbling, and J. B.
Tenenbaum. Predicate invention for bilevel planning. In AAAI, 2023.

[34] A. Ahmetoglu, E. Oztop, and E. Ugur. Symbolic manipulation planning with discovered object
and relational predicates. arXiv preprint arXiv:2401.01123, 2024.

[35] N. Shah, J. Nagpal, P. Verma, and S. Srivastava. From reals to logic and back: Inventing symbolic
vocabularies, actions and models for planning from raw data. arXiv preprint arXiv:2402.11871,
2024.

10

[36] M. Han, Y. Zhu, S.-C. Zhu, Y. N. Wu, and Y. Zhu. Interpret: Interactive predicate learning from
language feedback for generalizable task planning. In RSS, 2024. 2

[37] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In ICML, 2022. 2

[38] T. Silver, V. Hariprasad, R. S. Shuttleworth, N. Kumar, T. Lozano-Pérez, and L. P. Kaelbling.
Pddl planning with pretrained large language models. In NeurIPS 2022 foundation models for

decision making workshop, 2022. 2

[39] K. Valmeekam, M. Marquez, S. Sreedharan, and S. Kambhampati. On the planning abilities of
large language models-a critical investigation. In NeurIPS, 2023. 2

[40] S. Kambhampati, K. Valmeekam, L. Guan, K. Stechly, M. Verma, S. Bhambri, L. Saldyt, and
A. Murthy. Llms can’t plan, but can help planning in llm-modulo frameworks. arXiv:2402.01817,
2024. 2

[41] Y. Chen, J. Arkin, Y. Zhang, N. Roy, and C. Fan. AutoTAMP: Autoregressive task and motion
planning with llms as translators and checkers. In ICRA, 2024. 2

[42] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. LLM+P: Empowering
large language models with optimal planning proficiency. arXiv:2304.11477, 2023.

[43] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh. Translating natural language to planning
goals with large-language models. arXiv:2302.05128, 2023.

[44] A. Mavrogiannis, C. Mavrogiannis, and Y. Aloimonos. Cook2ltl: Translating cooking recipes
to ltl formulae using large language models. In ICRA, 2024. 2

[45] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. Kaelbling, and M. Katz. Generalized
planning in PDDL domains with pretrained large language models. In AAAI, 2024. 2

[46] X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang, B. Li, L. Lu, X. Wang, et al. Ghost
in the Minecraft: Generally capable agents for open-world enviroments via large language
models with text-based knowledge and memory. arXiv:2305.17144, 2023. 2

[47] K. Nottingham, P. Ammanabrolu, A. Suhr, Y. Choi, H. Hajishirzi, S. Singh, and R. Fox. Do
embodied agents dream of pixelated sheep: Embodied decision making using language guided
world modelling. In ICML, 2023. 2

[48] S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang, and Z. Hu. Reasoning with language
model is planning with world model. In EMNLP, 2023. 2

[49] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as
policies: Language model programs for embodied control. In ICRA, 2023. 2

[50] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models. In
ICRA, 2023. 2

[51] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language
instructions to feasible plans. Autonomous Robots, 47(8):1345–1365, 2023. 2, 6

[52] M. Skreta, Z. Zhou, J. L. Yuan, K. Darvish, A. Aspuru-Guzik, and A. Garg. Replan: Robotic
replanning with perception and language models. arXiv:2401.04157, 2024. 2

[53] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv:2303.03378,
2023. 2

11

[54] Z. Wu, Z. Wang, X. Xu, J. Lu, and H. Yan. Embodied task planning with large language models.
arXiv:2307.01848, 2023.

[55] J. Xiang, T. Tao, Y. Gu, T. Shu, Z. Wang, Z. Yang, and Z. Hu. Language models meet world
models: Embodied experiences enhance language models. In NeurIPS, 2024. 2

[56] H. Wang, K. Kedia, J. Ren, R. Abdullah, A. Bhardwaj, A. Chao, K. Y. Chen, N. Chin, P. Dan,
X. Fan, et al. Mosaic: A modular system for assistive and interactive cooking. arXiv preprint

arXiv:2402.18796, 2024. 2

[57] Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao. Look before you leap: Unveiling the power of
GPT-4v in robotic vision-language planning. arXiv:2311.17842, 2023. 2, 6

[58] N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi. ChatGPT empowered
long-step robot control in various environments: A case application. IEEE Access, 2023. 2

[59] L. Wong, J. Mao, P. Sharma, Z. S. Siegel, J. Feng, N. Korneev, J. B. Tenenbaum, and J. Andreas.
Learning adaptive planning representations with natural language guidance. In ICLR, 2024. 2

[60] L. Guan, K. Valmeekam, S. Sreedharan, and S. Kambhampati. Leveraging pre-trained large
language models to construct and utilize world models for model-based task planning. In
NeurIPS, 2023.

[61] P. Smirnov, F. Joublin, A. Ceravola, and M. Gienger. Generating consistent PDDL domains
with large language models. arXiv:2404.07751, 2024. 2

[62] Z. Li, K. Yu, S. Cheng, and D. Xu. League++: Empowering continual robot learning through
guided skill acquisition with large language models. In ICLR 2024 Workshop on Large Language

Model (LLM) Agents, 2024. 2

[63] M. Dalal, T. Chiruvolu, D. Chaplot, and R. Salakhutdinov. Plan-seq-learn: Language model
guided rl for solving long horizon robotics tasks. In ICLR, 2024. 2

[64] V. Lifschitz. On the semantics of STRIPS. In M. Georgeff, Lansky, and Amy, editors, Reasoning

about Actions and Plans, pages 1–9. Morgan Kaufmann, San Mateo, CA, 1987. 3

[65] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram, M. Veloso, D. Weld, D. W.
SRI, A. Barrett, and D. Christianson. PDDL: The Planning Domain Definition Language, 1998.
4

[66] T. Migimatsu and J. Bohg. Grounding predicates through actions. In ICRA, 2022. 5, 7

[67] J. Mao, T. Lozano-Pérez, J. Tenenbaum, and L. Kaelbling. PDSketch: Integrated domain
programming, learning, and planning. In NeurIPS, 2022. 5

[68] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al.
Grounding Dino: Marrying dino with grounded pre-training for open-set object detection.
arXiv:2303.05499, 2023. 5, 17

[69] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic
search. JAIR, 14:253–302, 2001. 5

[70] M. Helmert. The fast downward planning system. JAIR, 26:191–246, 2006. 5

[71] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. RA-L, 7:7327–7334,
2021. 5

[72] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation
learning over unstructured data. RA-L, 7:11205–11212, 2022. 6, 21

12

[73] Y. Zhang, X. Huang, J. Ma, Z. Li, Z. Luo, Y. Xie, Y. Qin, T. Luo, Y. Li, S. Liu, et al. Recognize
Anything: A strong image tagging model. In CVPR, 2024. 14

[74] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-Actor: A multi-task transformer for robotic
manipulation. In CoRL, 2023. 16

[75] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3D Diffuser Actor: Policy diffusion with 3D
scene representations. arXiv:2402.10885, 2024. 16

[76] Z. Zhang, Y. Li, O. Bastani, A. Gupta, D. Jayaraman, Y. J. Ma, and L. Weihs. Universal Visual
Decomposer: Long-horizon manipulation made easy. In ICRA, 2024. 16

[77] W. Wan, Y. Zhu, R. Shah, and Y. Zhu. Lotus: Continual imitation learning for robot manipulation
through unsupervised skill discovery. In ICRA, 2024. 16

[78] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu. PCT: Point cloud
transformer. Computational Visual Media, 7:187–199, 2021. 17

[79] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion planning in the now. In
ICRA, 2011. 19, 20

[80] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in
belief space for partially observable task and motion problems. In ICRA, 2020. 20

13

	Introduction
	Related Work
	Problem Formulation
	Behavior from Language and Demonstration
	Behavior Description Learning
	Classifier and Policy Learning
	Bi-Level Planning and Execution

	Experiments
	Simulation Experimental Setup
	Results in Simulation
	Real World Experiments

	Conclusion and Discussion
	blade Details
	Behavior Description Generation with LLMs
	Predicate Generation with LLMs
	Temporal Segmentation
	Abstract Verification
	Automatic Predicate Annotation
	Classifier Implementation
	Policy Implementation
	Planner Implementation

	Simulation Experiment Details
	Task Design
	Baseline Implementation

	Qualitative Examples
	Real World Experiment Details
	Task Design
	Qualitative Examples of Novel States

	Prompts for Baselines

